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Abstract

A new unsuperised feature extraction method caled similar component analysis (SCA) is proposed in this paper. SCA

method has a self-aggregation property that the data objects will move towards each other to form clusters through SCA theoretically,

which can reveal the inherent pattern of similarity hidden in the dataset. The inputs of SCA are just the pairwise similarities of the dataset,

which makes it easier for time series analysis due to the variable length of the time series. Our experimental results on many problems have

verified the effectiveness of SCA on some engineering appli cation.
Keywords:

% is an old problem in pattern

Data clustering "
recognition and data mining community, since orga-
nizing observed data on groups or clusters is the first
step to exploit coherent patterns and useful structures
hidden in the dataset. M any data clustering methods
have been proposed in the past several decades. How -
ever, some of them are only effective for some specific
cluster shapes. For example, k-means ' is suitable
for the dataset having round clusters, while Gaussian
mixture mode' > is more effective to discover the ellip-
tical clusters. Another fact that hinders the applica-
tions of the traditional clustering methods is that most
of them are based on the dataset itself, which means
that all the training data should be supplied as inputs.
However, in some fields such as time series analysis,
the data objects may have different dimensionalities,
and it is hard for those traditional clustering methods
to cluster this kind of data. For instance, in k-
means, the mean of different clusters is computed in
each iteration step, but for a set of time series of dif-
ferent lengths, we do not know what their mean is.

In recent years, a new clustering algorithm

¥ was proposed based on

called spectral clustering *
graph theory. The main idea of spectral clustering is
firstly to embed the data points to some space in
which the clusters are more “obvious”, then perform
a classical clustering algorithm, such as k-meand” .

In such a way, impressively good results can be ob-

clustering, feature extraction, similar component.

tained on the dataset with arbitrarily shaped clusters
where traditional clustering approaches would fail.
However, the computation of affinity matrix in spec-
tral clustering is also dependent on the dataset itself.

Inspired by spectral clustering, a novel feature
extraction method called similar component analysis is
proposed (SCA) in this paper. The features extracted
by SCA are called similar components analysis. It is
proved theoretically that if the clusters hidden in the
dataset are non-overlapped, then the similar compo-
nents can make the data from the same class self-ag-
gregated. The similar components of the data in the
same class will have the same value, while the Similar
Components of the data in different classes will have
different values. Moreover, in this cases we only
need the pairwise similarities of the dataset as our in-
puts which makes our method easily be generalized
to some cluster problems difficult to be solved by the
traditional method. Like time series clustering, there
have been many methods to measure the similarity of
time series data no matter how long the time series
are ®" 9. Our experimental results verify the effec-
tiveness of our proposed approach.

1 Similar component analysis
1.1 Overview of the algorithm

Generally we can quantify the associations among
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data objects by a similarity metric, such as the Eu-
clidean distance and M ahalanobis distance. Our SCA
algorithm starts with a similarity matrix § = Cs;)
with 5= 5;=0. The sj measures the similarity be-
tween data i and data j. § is row-normalized such

N
that 2 sij = 1. Thus, SCA simply performs eigen-

=
value decomposition to § as follows:

Sv= . (D
Then the k eigenvectors corresponding to the largest
k eigenvalues (also called the & dominant eigenvec-
tors) are called the first k& similar components of the
dataset. The procedure of SCA is shown as follows:

Step 1: Input the similarity metric d, number of

components k.

Step 2: Construct the similarity matrix $= Cs;)

v
Step 3: Normalize the rows of § to make Zsl-j

j=1

Step 4: Do eigenvalue decomposition on S.

Step 5: Output the & dominant eigenvectors as

the first £ similar component.

1.2 Self-aggregation property of SCA: the ideal
case

In this subsection, the ideal case will be analyzed
when there is no overlap among the clusters; and the
k-dimensional space spanned by the first k similar
components is found to have an interesting self-aggre-

gation property.

Proposition 1 (self-aggregation). When there
are K non-overlapped clustersin the dataset, the first
k similar components of the dataset are all piecewise-
constant assuming the data objects within the same
cluster are indexed consecutively. And in the space
spanned by the first k£ similar components, all data of
the same cluster self-aggregate to a single point.

Proof. The term “non-overlapped” isused to re-
fer to the case where 5;=0 if data i and data j be-
long to different clusters. Therefore, § can be writ-
ten as

S = diag (8}, S5 -5 S;). 2
Here, § is a block-diagonal matrix, because the data
within the same cluster are assumed to have been in-

dexed consecutively. Since the rows of § have been
normalized, from the theorem of Perron-Frobenius ’
that 1 is the largest eigenvalue of S, it can be easily

verified that the column vector ;= (0, 0, -+ €, -+

0.0)ER", where i€{1,2 -5 K} is the eigenvec-

tor of S corresponding to eigenvalue A, = 1. Here,

max

= (1, 1, -, 1) is a row vector with its dimensional-

ity identical to the size of the i-th cluster. And it can

be easily deduced that for any K real numbers (a,
K

Ays 4 Ag )y T = Ea,z,- is also an eigenvector of §
i=1

max — 1. Clearly, all the ele-

ments within the same cluster will have the same val-

with the eigenvalue A

uein z, which makes z a K-step function. That is
to say, in the space spanned by the first K similar
components, all the data objects belonging to the
same cluster will self-ag gregate to the same point.

Proposition 1 also answers why the features ex-
tracted by SCA are called similar components analy-
SiS.

1.3 Connection to kernel PCA: extension to testing
data

SCA has been introduced and analyzed in Section
1. 1 and 1. 2. However

method, SCA still cannot extract features from test-

as a feature extraction

ing data. In this subsection, the connection between
SCA and kernel principal component analysis will be
analyzed and then SCA can be extended to test the
data ' .

It is well known that principal component analy-
sis (PCA) is a statistical technique that can extract
the most informative k-dimensional output vector y
from an input vector x of d-dimension (d >k ).
Scholkopf et al.''” generalized the traditional PCA to
the nonlinear case and proposed the kernel principal
component analysis (KPCA) method.

The KPCA method first maps the original

dataset in R” to some high dimensional feature space
F by some nonlinear mapping ©. ®=1[ @ (x;),
D(x,), - P(xy)] is the mapped data matrix.
The main idea of KPCA is to perform PCA in this
mapped feature space. By assuming that the data ob-
jects have already been centered in the feature space
and the non-centered case can be referred to Ref.
[10], the following equations can be used to compute
the projections of the training and testing data on the
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k-th kernel pnnmpal compo nent

P = 2%<q><x>q><x,>>_2%1<,,, 3)

P *2“ (@ (x) P(x,)). @
=

Therefore, the projections of the training and testing
data can be computed by doing eigenvalue decomposi-
tions to K. The kernel matrix is an inner-product
matrix, and the inner-product of two data objects is
usually used for measuring the similarity between
them. If we extend this idea and let the entries of the
kemnel matrix K. be some arbitrary similarity metric
which can measure the pairwise similarity of the cor-
responding data objects, then the kernel matrix K.
will become the similarity matrix in SCA. As ana-
lyzed in Proposition 1, the corresponding eigenvalues
of the similar components are all 1. In this case, Eq.
(3) becomes

= (Keock),- =1°oq= a, (5

which is equivalent to SCA. Thus, SCA is equivalent
to non-centralized KPCA, and Eq. (4) can be used to
compute the similarity components of the out-of-sam-
ple data.

1.4 M aximum within cluster association in similar

component space: the general case

The ideal case of SCA is analyzed in Section 1.2
and treated as a non-centralized KPCA in Section
1.3. In this subsection, SCA will be analyzed in a

general case from a KPCA view point.

Proposition 2 (maximum within cluster associa-
tion). If we view the similarity matrix § as an inner
product matrix in some Hilbert space from the KPCA
view point, then the within cluster association will be
maximized in the space spanned by the first K similar
components of the dataset.

Proof. In KPCA view, the similarity matrix can
@ will be used

to denote the data matrix after nonlinear mapping,

be treated as an inner product matrix.

and the similarity matrix can be rewritten as § =
D, D= D(x),, -

data from class i (with size s;). Assuming that the

D(x),] represents the

data are indexed consecutively, thatis @=[ @, -,
@], it can be easily proved that the order of data

will not affect the final results where K is the num-
ber of classes. Then the within-class scatter matrix

class k is;

G = 123Gy~ m) (@) mp,
=
6)

where m;= Pg,/ s; is the mean vector of class k, and

e; is a vector of dimension s; with all elements being

one. So with some simple algebra inferences, we can

D
ee;
C‘l‘:l i{li }Q’II" (7)
S; S

where I; is the identity matrix of order s;. Then the

total within-class scatter matrix can be defined as
K

C=25C,.
i—1

cipal for data analysis is to minimize the trace of C,
that is
min/= trace(C)

get

It is well known that a common prin-

£ . e o
= E trace(Q,D; ) — —o; @

e

P (e trace JS'_, i JS‘_I
In this way, the data in the same class is distributed
as tightly as possible[ & Defining the block-diagonal
matrix Q = diag (e;/ J?lv vy e/
J = trace(PD") — trace(QT ol ©0). (8
Now if the constraint of @ is relaxed to QTQ: 1,

then optimizer (8) becomes

max trace ( QT o' Q). )
0 0=1
From the theorem of generalized Rayleigh*Ritz[ q s it
can be easily derived that the solution of (9) is @ =

[ q1> g2 s q¢] R, where ¢, ¢ -5 qx are the K

. . T . .
dominant eigenvectors of Y ® and R is an arbitrary

Sk ), then

orthogonal matrix. Recalling that §= "' D, 50 the
conclusion can be drawn that the within cluster asso-
ciation will be maximized in the space spanned by the
first K similar components of the dataset.

From Proposition 1 and Proposition 2 we can in-
fer that the cluster structure hidden in the dataset will
become clear in the space spanned by the first K simi-
lar components of the dataset. In the next section we
will provide a set of experiments to show the effec-

tiveness of SCA.
2 Experimental results
2.1 2D synthetic data clustering

The synthetic data set with 200 samples is de-
picted in Fig. 1. The traditional k-means, using coor-
dinates of sample points as features, partitions the da-
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ta set into two clusters as shown in Fig. 1 (a). The
result is obviously not satisfying. As a com parison,
our SCA method is also employed for this task using
the Gaussian function

2
x—x I

Sij = exp 20"
as the similarity measure with some proper o (deter-
mined experimentally), since Gaussian function-based
similarity has been successfully applied in many spec-
tral based clustering methods. After the similar com-
ponents have been extracteds we will perform k-
means to cluster them and the result is shown in Fig.
1(b), from which we can clearly see that SCA out-

performs k-means.
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Fig. 1. 2D synthetic data clustering. (a) Clustering results by k-

means; (b) clustering results by SCA+ k-means.

2.2 Time series clustering

A real EEG (Electroencephalogram ) dataset
which is extracted from the 2nd Wadsworth BCI
dataset in BC12003 competition is used in our experi-
ments " . According to Ref. [ 11], the data objects
can be generated from three classes: the EEG signals
evoked by flashes containing targets, the EEG signals
evoked by flashes adjacent to targets, and other EEG
signals. All the data objects have an equal length of
144. We randomly choose 50 EEG signals from each
class and use the Euclidean distance and the BP met-
1id " to measure the pairwise distances of the time
series. Then these distances will be transformed to
represent the pairwise similarities by a Gaussian func-
tion with some proper variance.

The clustering accuracies

¥ achieved from hier-
archical agglomerative clustering (HAC)'? methods
and our approach (i.e. SCA + k-means) are com-
pared, and the final cluster number is set to be 3
manually. The final results are given in Table 1.
“HACC”, “HACS” and “HACA” are used to repre-
sent the complete-linkage, singleinkage and average-

linkage hierarchical agglomerative clustering meth-

ods, respectively. From Table 1 we can see clearly
the advantage of SCA.

Table 1. Clustering results on EEG dataset
HACC HACS HACA SCA
Euclidean  0.4778 0.3556 0.3556 0.5222
BP 0.4556 0.3556 0.4222 0.5444

2.3 Color image segmentation

Now SCA method is applied to color image seg-
mentation problems. The RGB (Red, Green, Blue)
values and the spatial coordinates of a pixel are used
as its features, thus a pixel is represented by a five tu-
ple (ry g, by x, y). The similarity of two pixels is
given by a Gaussian function. The segmentation re-
sults can be seen in Fig. 2, where Fig. 2(a), 2(b)
are the original images and Fig. 2 (¢), 2(d) are the
segmented images.

Fig. 2.

Color image segmentation.
2.4 Face recognition

The ORL database!'? is selected as our experi-
mental dataset. The recognition accuracy is tested
with different numbers of training samples.  (t=2,
3,4) images of each subject were randomly selected
for training, and the remaining 10-k images of each
subject for testing. The Gaussian function is used to
measure the similarity between two faces. The recog-
nition results can be seen in Table 2, and the recogni-
tion accuracy achieved by the traditional PCA and
kernel PCA method is given for comparison.
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Table 2. Recognition accuracy on O RL dataset

t PCA KPCA SCA
2 0. 7225 0.7713 0.7756
3 0. 7996 0.8511 0.8516
4 0. 8492 0.8990 0. 8967

Since the KPCA is a popular method to face
.. [14 .. _
recognition ', we can see that the recognition re

sults obtained by SCA can approximate the KPCA

recognition accuracy.
3 Conclusions and discussion

In this paper, a novel feature extraction method
called similar component analysis (SCA) has been
proposed. The SCA method has a self-aggregation
property that the data objects will move tow ards each
other to form clusters through SCA theoretically. It
has been found that the inherent pattermn of similarity
hides in the dataset. The inputs of SCA are just the
pairwise similarities of the dataset, which makes time
series analy sis easier due to the variable length of the
time series. Several experiments have been presented
and the advantages of our method can be seen easily.
Although we can apply the Gaussian function, there
are still some unanswered questions such as how to
choose a proper similarity metrics which will be dis-
cussed in the subsequent paper.
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